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1. Introduction

The origin of the peculiar pattern of fermion masses and mixing might appear more or

less transparent at low scale depending on the degree of understanding of the full theory it

requires. Most approaches to the problem rely on the possibility that a full understanding

is not required and the pattern of fermion masses and mixings follows from a “factorizable”

dynamical principle associated to the “horizontal” family indices. In this paper we discuss

the possibility that not even such a dynamics needs to be known, or exists at all, and

the peculiar fermion mass pattern we observe simply follows from the fact that one heavy

vectorlike family of fields turns out to be lighter than the rest of the heavy fields. The

couplings of this lighter heavy family with the light families will not be constrained by any

symmetry or alternative mechanism imposed on the theory. They will instead all be of

order one, perhaps determined by some fundamental theory we do not need to know, and

the charged fermion hierarchy will follow from the hierarchy in the breaking of the vertical

gauge structure of the theory, in particular from the breaking of the Pati-Salam (PS) gauge

group [1]. Chiral symmetries acting on family indices protecting the masses of the first two

fermion families emerge in this context as accidental symmetries.

In section 2 we motivate the structure of the model and in particular the choice of

the left-right (LR) symmetric and Pati-Salam (PS) gauge groups. In section 3, which is

supposed to be self-contained, we define in detail the model and sistematically analyze it.

Supersymmetry is assumed throughout the paper.

– 1 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
8

2. A bottom-up approach to flavour from accidental symmetries

2.1 Messenger dominance

Let ψi = qi, u
c
i , d

c
i , li, n

c
i , e

c
i , i = 1, 2, 3 denote the three light SM families in Weyl notations,

including three singlet neutrinos, and let h = hu, hd denote the light Higgs. As usual, the

lightness of the three SM families (except possibly the singlet neutrinos) is guaranteed by

their chirality with respect to the SM group, while additional degrees of freedom are allowed

to be much heavier because they come in vectorlike representations of the SM group. As

anticipated in the introduction, the pattern of fermion masses arises in our model from

the existence of a single relatively light vectorlike family of “messengers” Ψ + Ψ, with

Ψ = Q,U c,Dc, L,N c, Ec, and from the breaking pattern of the gauge group. We also

consider the possibility of heavy Higgs messenger fields H = Hu,Hd.

Since Ψ has the same SM quantum numbers as ψi, we use a discrete Z2 symmetry

to tell the light families from the heavy one. The light fields ψi, h are Z2-odd, while

the messengers are even. In the unbroken limit, the light families are massless, while the

messengers fields Ψ,Ψ,H are allowed to be superheavy.1 Yukawa couplings for the light

fields are forbidden by the Z2 symmetry. In order to break it, we then also include a

SM-singlet Z2-odd chiral field φ. Its scalar component will get a vacuum expectation value

(vev) at a heavy scale not far from the messenger scale. Needless to say, the Z2 symmetry

is not a family symmetry, as it does not tell the three families apart, all being odd under

it. This is similar to what done in [2], where the hierarchical pattern of fermion masses

was also addressed without the use of family symmetries.

Once φ gets a vev, the light and heavy fermions mix, which gives rise to the SM

Yukawa couplings. In the limit in which the vev is smaller than the mass of the heavy

messengers, 〈φ〉 ¿ M , the Yukawa couplings of the light fermions can be seen to arise from

higher dimensional operators in the effective theory below the scale M . This limit does

not always hold in our model, as we will see, but it is useful for illustrative purposes and

will be used in this section. The exact treatment is postponed to section 3. At the lowest

order, the relevant operators are in the form (φ/M)ψiψjh and they arise from the three

diagrams in figure 1.

If the three contributions in figure 1 are comparable and if the couplings involved are

uncorrelated, we expect the fermion masses of the three families to be comparable. On

the other hand, in the limit in which one of the three exchanges dominates (because the

corresponding messenger is lighter) one family turns out to be heavier and a hierarchy is

generated. This mechanism has several interesting features. The “horizontal” hierarchy

among different families follows from a “vertical” hierarchy among messengers belonging

to the same family, as in [2]. As a consequence, the interfamily hierarchy can be attributed

to the breaking pattern of the gauge group. Moreover, we will see that a two step breaking

of the gauge group below the cutoff of the theory is sufficient to account for the complex

hierarchical structure of charged fermions. We will also see that in spite of the absence of

1The SM Higgs h is of course in principle also allowed to be heavy. We do not address this µ-problem

here.
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Figure 1: Messenger exchanges contributing to the operator (φ/M)ψiψjh in the effective theory

below the messenger scale. F , f refer to electroweak doublets, while F c, f c refer to electroweak

singlets.

small coefficients, the CKM mixing angles will turn out to be small, while in the neutrino

sector an attractive mechanism is available to give rise to a naturally large atmospheric

mixing between normal hierarchical neutrinos.

Let us see how this works in greater detail. Let us concentrate on the two heavier

families and let us also neglect for the time being the Higgs exchanges in figure 1. We will

discuss their role in connection to the first family masses in section 3. In compact notations,

the most general renormalizable superpotential is (we illegally use the same notation for

the chiral superfield and its “RP -even” component)

W = MΨ̄Ψ + αiΨ̄ψiφ + λiΨψih, (2.1)

where

MΨ̄Ψ ≡ MQQ̄Q + MU Ū cU c + MDD̄cDc + MLL̄L + MN N̄ cN c + MEĒcEc

αiΨ̄ψiφ ≡ αQ
i Q̄qiφ + αU

i Ū cuc
iφ + αD

i D̄cdc
iφ + αL

i L̄liφ + αN
i N̄ cnc

iφ + αE
i Ēcec

iφ (2.2)

λiΨψih ≡ λQu
i Quc

ihu + λUq
i U cqihu + λQd

i Qdc
ihd + λDq

i Dcqihd+

λLn
i Lnc

ihu + λNl
i N clihu + λLe

i Lec
ihd + λEl

i Eclihd

.

No family symmetry or other dynamical constraint is imposed on the couplings. As a

consequence, the dimensionless parameters in eq. (2.1) are all assumed to be O (1) and

uncorrelated. When φ gets a vev, the heavy and light fermions mix, which gives rise to the

quark Yukawa matrices Y U and Y D. In the limit 〈φ〉 ¿ M (and in the RL convention for

the Yukawas)

−Y U
ij = λQu

i αQ
j

〈φ〉
MQ

+ αU
i λUq

j

〈φ〉
MU

(2.3a)

−Y D
ij = λQd

i αQ
j

〈φ〉
MQ

+ αD
i λDq

j

〈φ〉
MD

. (2.3b)
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Let us first consider the matrix Y U . The up quark is massless, since Y U has rank two. If

MQ ∼ MU , the charm mass is expected to be of the same order of the top quark mass.

This is because no horizontal hierarchy nor alignment is forced among the family dependent

parameters αQ
i , αU

i , λQu
i , λUq

i . However, in the limit in which one of the terms in eq. (2.3a)

dominates, the charm mass gets suppressed, as one messenger cannot give a mass to more

than one family. A small Vcb angle is only guaranteed if the Q exchange is dominant in both

the up and down quark sectors.2 We refer to this hypothesis as “left-handed dominance”.

We have then generated an inter-family hierarchy in terms of order parameters associated

to the intra-family messenger structure, MQ/MU ,MQ/MD ¿ 1. The mechanism at work

behind the explicit discussion above has to do with accidental flavour symmetries emerging

in specific limits. First of all the discussion above holds in the limit in which the first

family is massless. Such a limit, which will be defined in section 3, implies the presence of

an accidental chiral symmetry protecting the first family. Moreover, a second accidental

symmetry protecting the masses of the of the second family fermions emerges in the limit

in which MU , MD become heavy.

A closer look to the textures obtained shows that in this framework the features of the

fermion masses and mixings are best interpreted in the context of a Pati-Salam extension

of the standard model group, as we now see.

2.2 Vus and SU(2)R symmetry

In order to write the Yukawa matrices in a simple form, we note that it is possible to choose

a basis in the qi, uc
i , dc

i flavour space such that αQ
1,2 = λQu

1,2 = λQd
1,2 = 0. We can then also

rotate the “1,2” fields to set αU
1 = αD

1 = λUq
1 = 0. If the dimensionless coefficients were of

the same order and uncorrelated in the initial basis, we expect the non-vanishing coefficient

to be still of the same order and uncorrelated in the new basis. The quark Yukawa matrices

can now be written as

Y U =







0 0 0

0 rU
2 aU

2 εU rU
3 aU

2 εU

0 rU
2 aU

3 εU 1






αQ

3 λQu
3

〈φ〉
MQ

, (2.4a)

Y D =







0 0 0

rD
1 aD

2 εD rD
2 aD

2 εD rD
3 aD

2 εD

rD
1 aD

3 εD rD
2 aD

3 εD 1






αQ

3 λQd
3

〈φ〉
MQ

, (2.4b)

where εU = MQ/MU , εD = MQ/MD ¿ 1 , while rU
i = λUq

i /λQu
3 , rD

i = λDq
i /λQd

3 , aU
i =

αU
i /αQ

3 , aD
i = αD

i /αQ
3 ∼ O (1) or vanishing.

A few remarks are in order. First of all, we note that eqs. (2.4) give

ms

mb

≈ rD
2 aD

2 εD ∼ rD
2 aD

3 εD ≈ |Vcb|, (2.5)

in agreement with data. In contrast, flavour symmetries often give ms/mb ∼ |Vcb|2, unless

non-abelian symmetries [3] or asymmetric textures [4] are considered. Eqs. (2.4) also

2This is true unless appropriate correlations are forced between the U and D coefficients, see below.
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show that the top and bottom Yukawa couplings are of the same order, i.e. tan β is large.

This is a prediction of the left-handed dominance scenario, which holds in the absence

of significant Higgs mixing. Note also that the simplest way to account for the more

pronounced hierarchy in the up quark sector, mc/mt ¿ ms/mb is to have εU ¿ εD and

therefore a double hierarchy MQ ¿ MD ¿ MU . We will see below that mc/mt ¿ ms/mb

can actually be explained without introducing a third scale.

The textures in eqs. (2.4) also have an unpleasant feature. Although the masses of

the first family fermions have still to be generated, the Cabibbo angle does not vanish and

ends up being typically large:

tan θC =

∣

∣

∣

∣

rD
1

rD
2

∣

∣

∣

∣

∼ 1. (2.6)

While the actual value of the Cabibbo angle is not very small and could be accomodated

by e.g. an accidental cancellation, we prefer to consider its smallness as the indication of

a non-accidental correlation between the λqU
1,2 and λqD

1,2 coefficients in the initial basis. In

turn, such a correlation points at an SU(2)R gauge symmetry [5] forcing

λQu
i = λQd

i λLn
i = λLe

i αU
i = αD

i (2.7a)

λUq
i = λDq

i λNl
i = λEl

i αN
i = αE

i . (2.7b)

We are therefore lead to a GLR = SU(2)L×SU(2)R×SU(3)c×U(1)B−L extension of the SM

gauge group.3 Eqs. (2.7) lead to λDq
1 = 0, rD

1 = 0, and therefore Vus = 0, as anticipated.

A non-vanishing value of Vus will be generated by the breaking of the SU(2)R symmetry,

which is anyway needed. The standard way to break GLR to GSM is through the vev of the

scalar component L̃′
c ( ˜̄L′

c) of a (Z2-even in our case) chiral right-handed doublet L′
c (L̄′

c)

transforming as Lc = (N c, Ec)T (L̄c = (N̄ c, Ēc)T ).

With the basis choice above, all the first family Z2-odd fermions have the same charge

under the accidental chiral U(1) symmetry protecting the first family, whereas all the

other fields are invariant. While a non-vanishing Vus will need the breaking of the SU(2)R
symmetry, a non vanishing mass for the first family will need the breaking of that accidental

chiral U(1). The accidental family symmetry protecting the second family emerges in the

limit in which U c, Dc become heavy so that they can be integrated out. All the second

family fermions have the same charge under it.

2.3 Neutrino masses and mixing

We have seen above that small mixing angles are easily obtained in the quark mass sector.

At the same time, large mixing angles naturally appear in the neutrino sector provided

3Note that in the presence of an SU(2)R symmetry the possibility of right-handed dominance also opens

up. In fact, the argument leading to left-handed dominance holds under the assumption that the couplings

in different sectors, in particular in the right-handed up and down sectors, are uncorrelated. On the other

hand, we just saw that the SU(2)R symmetry does correlate quantities involving right handed up and down

quarks and leptons. As a consequence, the possibility that the Q + Q̄ exchange be subdominant to the

Qc + Q̄c exchange opens up. In this context, one finds λc ∼ λs and therefore tan β ∼ mc/ms. The Q and

Qc dominance scenarios are therefore characterized by different predictions for tan β. We do not pursue

this possibility further in this paper.
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that the right-handed neutrino messengers N c, N̄ c dominate the see-saw. This is closely

related to the peculiar features of our setting, as we now see.

As in the quark sector, it is convenient to consider a basis in which αL
1,2 = λLn

1,2 = λLe
1,2 =

0 and αN
1 = αE

1 = λNl
1 = λEl

1 = 0. Because of the left-handed dominance hypothesis, this

choice makes in fact the charged lepton Yukawa matrix approximately diagonal. On the

other hand, the couplings λNl
2,3 of N c to l2 and l3 are expected to be comparable. We

have in fact already used our freedom to redefine l2, l3 to make the mixings small in the

charged lepton sector. As the charged leptons are approximately diagonal, this means that

the singlet neutrino N c has similar O (1) couplings to νµ and ντ . If N c dominates the

see-saw, this is precisely the condition needed to obtain a large atmospheric mixing angle

and normal hierarchical neutrino masses in a natural way [6]. We will see in the next

section that all the heavy singlet neutrino masses will be approximately at the same scale,

but the “N cN c” entry of the inverse heavy Majorana mass can still dominate the see-saw

mechanism. Note that this is an example of see-saw dominated by a singlet neutrino that

is not a Pati-Salam (or SO(10)) partner of the light lepton doublets.

2.4 The charm quark Yukawa and Pati-Salam

Since the fields U c and Dc are unified in a right-handed doublet Qc = (U c,Dc)T , an

unwanted consequence of the SU(2)R symmetry is MU = MD = MQc , which gives mc/mt ≈
ms/mb. The SU(2)R symmetry must therefore on the one hand protect Vus, on the other

be badly broken in order to differentiate the charm and strange Yukawas. This apparent

problem turns out to provide additional insight on the structure of the model.

It turns out that an indirect coupling of the available source of SU(2)R breaking (the

scalar fields L̃′
c,

˜̄L′
c) to the fermions Qc, Q̄c is the simplest and most natural way to achieve

the hierarchy mc/mt ¿ ms/mb. Coupling (L̃′
c,

˜̄L′
c) to (Qc, Q̄c) at the renormalizable level

needs the introduction of new fields. There are only two possibilities. The one we are

interested in is a vectorlike pair of fermion fields T + T̄ transforming as (1, 1, 3, 4/3) +

(1, 1, 3̄,−4/3) under GLR (the last entry denotes the value of B −L). Such fields couple to

the (L̃′
c,

˜̄L′
c) and (Qc, Q̄c) fields through the interaction TQc ˜̄L′

c and T̄ Q̄cL̃′
c. Once the scalar

doublets get a vev, the latter interactions contributes to the masses in the up sector and

allows to suppress the charm mass, as we will see in section 3.2. The second possibility4

does not suppress the charm mass, as it only affects the down quark sector. It can play a

role in the case of right-handed dominance.

The introduction of fermions with the quantum numbers of T + T̄ might look at first

sight quite “ad hoc”. On the other hand, such fermions automatically arise with the Pati-

Salam extension of the GLR group, GPS = SU(4)c × SU(2)L × SU(2)R. The quantum

numbers of T + T̄ appear in fact in the decomposition under GLR of the SU(4)c adjoint

and their interactions follow from the standard coupling of the adjoint to the fundamental

of SU(4)c. In particular, fields with the quantum numbers of T + T̄ can certainly be found

4A vectorlike pair S + S̄ transforming as (1, 1, 3,−2/3) + (1, 1, 3̄, 2/3) and coupling through SQcL̃′

c and

S̄Q̄c ˜̄L′

c.

– 6 –
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fi f c
i h φ F F̄ F c F̄ c H F ′ F̄ ′ F ′

c F̄ ′
c Σ X Xc

SU(2)L 2 1 2 1 2 2 1 1 2 2 2 1 1 1 1 1

SU(2)R 1 2 2 1 1 1 2 2 2 1 1 2 2 1 1 3

SU(4)c 4 4̄ 1 15 4 4̄ 4̄ 4 1 4 4̄ 4̄ 4 15 15 1

Z2 − − − − + + + + + + + + + + + +

RP − − + + − − − − + + + + + − + +

Table 1: Field content of the model and quantum numbers under GPS and Z2

among the SU(4)c gauginos.5 Unfortunately the simplest implementation of the economical

interpretation in which the T + T̄ fields are gauginos and L′ = L leads to problems in the

Higgs sector. In order to avoid those problem we will make sure that R-parity is not broken,

which requires T + T̄ and L̃′, ˜̄L′
c to be associated to new chiral fields.

3. A model of flavour from accidental symmetries

3.1 Definition of the model

The chiral superfield content of the model and the quantum numbers under GPS and Z2

are specified in table 1. The first block contains the Z2-odd fields: the 3 light (in the

unbroken Z2 limit) families (fi, f
c
i ), i = 1, 2, 3, the light Higgs h and the Z2-breaking

field φ. The latter is in the adjoint representation of SU(4)c as this provides the Georgi-

Jarlskog factor 3 needed to account for the µ–s mass relation. The second block contains

the messengers, in a single vectorlike family (F,Fc) + (F̄ , F̄c). A Higgs messenger is also

included, corresponding to figure 1c. The third block contains the fields F ′
c + F̄ ′

c breaking

the Pati-Salam group (including the SU(2)R subgroup) and an Z2-even SU(4)c adjoint Σ

providing the fields T + T̄ discussed in section 2. SO(10) partners F ′ + F̄ ′ of F ′
c + F̄ ′

c are

also included. The last block contains two sources of Pati-Salam breaking. They contain

the two possible SM invariant directions in the Pati-Salam adjoint. Table 1 also shows

the R-parity associated to each field. R-parity plays a role in preventing the economical

identification of the primed fields with F c and F̄ c and of Σ with the SU(4)c gauginos.

When discussing the neutrino sector we will also introduce Pati-Salam singlets.

Our hypothesis is that the Pati-Salam gauge structure and the fields in table 1 happen

to be the only relatively light fields surviving below the cutoff Λ of our theory, which will

not be very far from 1016 GeV. We implement this hypothesis by linking the mass of the

heavy fields to Pati-Salam breaking. We do not address the origin of this assumption here.

No dynamics related to the family indices is required. On the contrary, we will assume

that the dimensionless coefficients in the superpotential are O (1) and uncorrelated.

5Note that such T + T̄ gauginos automatically get a heavy mass and are thus splitted from the lighter

gluinos by the SU(4)
c
→ SU(3)

c
spontaneous breaking. Note also that the required coupling with Qc ˜̄L′

is also automatically present in the form of a supersymmetric gauge interaction, provided that L̃′ is the

partner of L.

– 7 –
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The renormalizable part of the superpotential is

W ren = λif
c
i Fh + λc

ifiF
ch + αiφfiF̄ + αc

iφf c
i F̄ c + XF̄F + XcF̄

cF c

+ σ̄cF̄
′
cΣF c + σcF̄

cΣF ′
c + σ̄F̄ ′ΣF + σF̄ΣF ′ + γXΣ2

+ λH
ij f

c
i fjH + ηF cFH + η̄F̄ cF̄H + η′F ′

cF
′H + η̄′F̄ ′

cF̄
′H. (3.1)

We have included all terms compatible with our hypotheses except a mass term for the

Higgses h and H. We have not shown the part of the superpotential involving the primed

fields and all other fields getting a vev. An irrelevant term XF̄ cF c is also omitted. As

anticipated, the messenger fields and Σ only get a mass through the Pati-Salam breaking

fields. Besides X, Xc, the fields getting a vev are φ, F ′
c, F̄ ′

c (RP is thus preserved). The

hierarchy of fermion masses originates from the assumption that the Pati-Salam breakings

along the T3R and N ′
c, N̄

′
c directions, 〈Xc〉 = Mc(2T3R) and 〈F ′

c〉 = (Vc, 0)
T ,

〈

F̄ ′
c

〉

= (V̄c, 0)
T

respectively, both take place at a scale Mc ∼ Vc much higher scale than the scale M ∼ v

of the breaking along the B − L direction, 〈X〉 = MTB−L, 〈φ〉 = vTB−L.6 The horizontal

fermion hierarchy therefore follows from the vertical structure of the theory. The vev of φ

breaks the Z2 symmetry and mixes light and heavy fields, thus giving rise to the Yukawa

couplings of light fields. The vevs of F ′
c and F̄ ′

c are responsible for the full breaking of

the Pati-Salam to the SM group, they generate a mixing between SU(3)c triplets which

suppresses the charm quark Yukawa, and they make H heavy.

It is convenient to choose a basis in flavour space such that λ1,2 = α1,2 = 0, λc
1 =

αc
1 = 0. Moreover, λ3, α3, λc

2,3, αc
2,3, γ, M , M c, σ̄c, 〈φ〉, Vc = V̄c, can all be taken

positive. We therefore see that the effective theory in which H is integrated out possesses an

accidental chiral U(1)1 flavour symmetry protecting the first family Yukawas: f1 → eiαf1,

f c
1 → eiαf c

1 . In the limit in which the heavier messengers F c, F̄ c are also integrated

out, an additional accidental flavour symmetry U(1)2 protects the second family Yukawas:

f2 → eiβf2, f c
2 → eiβf c

2 . The hierarchy between the third and the first two fermion

family masses can be seen as a consequence of the above flavour symmetries. The stronger

suppression of the first fermion family mass is due to the fact that the heavy Higgs H

does not mix with h at the renormalizable level. This is because the coupling φHh is not

allowed by the SU(4)c symmetry. The suppression of the first family masses is therefore

obtained for free, as it is a consequence of the Pati-Salam quantum numbers of φ, which

are independently motivated by the mµ/ms ratio.

3.2 The fermion spectrum at the renormalizable level

Since R-parity is not broken, we can confine ourselves to the RP -odd fields. Let us denote

6One example for the superpotential involving the primed fields and Xc, X, φ only is (neglecting F ′, F̄ ′,

including mass terms)

W ′ = (Mc − δcXc)F̄
′

cF
′

c +
MXc

2
X2

c +
MX

2
X2 +

Mφ

2
φ2 + ρ1X

3 + ρ2Xφ2.

This it the most general renormalizable potential except for the XF̄ ′

cF
′

c coupling, which is assumed to vanish.

One solution of the F -term equations is (up to an SU(2)R rotation) δc 〈X〉 = Mc(2T3R), (δc/2)
2

˙

N̄ ′

cN
′

c

¸

=

M2

Xc
, 〈φ〉 = 0, 〈X〉 = 0. Both the breaking along the T3R and N ′

c, N̄
′

c directions take place at the same

scale Mc, while the breaking along the B − L direction is suppressed (zero at the renormalizable level).
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by AΣ, TΣ, T̄Σ, GΣ the (properly normalized) SM components of Σ. Under SU(3)c ×
SU(2)w × U(1)Y , A is a singlet, T ∼ (3, 1, 2/3) is a color triplet, T̄ ∼ (3̄, 1,−2/3) is an

antitriplet, G ∼ (8, 1, 1) is an octet. With standard notations for the SM components of

the fields in table 1, the mass terms are

−L̄ [ML + α3vl3] − Ēc [McE
c + v(αc

3e
c
3 + αc

2e
c
2)]

+
1

3
Q̄ [MQ + α3vq3] − D̄c

[

McD
c − v

3
(αc

3d
c
3 + αc

2d
c
2)

]

+Ū c

[

McU
c +

σc√
2
VcT̄Σ +

v

3
(αc

3u
c
3 + αc

2u
c
2)

]

+ TΣ

[

MΣT̄Σ +
σ̄c√
2
VcU

c

]

+N̄ c [McN
c − v(αc

3n
c
3 + αc

2n
c
2)] −

√

3

8
σcV

cN̄ cAΣ −
√

3

8
σ̄cVcN

cAΣ + MΣA2
Σ

+η′VcL
′Hu + η̄′VcL̄

′Hd −
MΣ

2
G2

Σ,

(3.2)

where MΣ = −(2/3)γM . The charged fermion Yukawas are obtained by identifying the

massless combinations and expressing the Yukawa lagrangian

λc
iU

cqihu+λc
iD

cqihd+λc
iN

clihu+λc
iE

clihd+λiu
c
iQhu+λid

c
iQhd+λin

c
iLhu+λie

c
iLhd (3.3)

in terms of them. We then obtain, at the scale M and at the leading order in ε,

Y D =







0 0 0

0 αc
2λ

c
2ε/3 αc

2λ
c
3c ε/3

0 αc
3λ

c
2ε/3 −sλ3






Y E = −







0 0 0

0 αc
2λ

c
2ε αc

2λ
c
3c ε

0 αc
3λ

c
2ε sλ3






, (3.4)

where c = cos θ, s = sin θ, tan θ ≡ α3v/M = O (1), ε ≡ v/Mc ¿ 1. The numerical value of

ε turns out to be ε ≈ 0.06 (sλ3)/(α
c
2λ

c
2).

The up quark sector deserves some additional comments. The situation is different

than in the down quark and charged lepton sector, as the triplet T̄Σ has the same SM

quantum numbers as uc
i and U c and mixes as well. The charm quark Yukawa arises

from the interaction λc
iU

cqihU when U c is replaced by its light component. The light

component must be orthogonal to both the combinations in squared brackets in the third

line of eq. (3.2). As a consequence, the charm Yukawa turns out to be suppressed twice.

The light component of U c vanishes in fact both in the v → 0 limit (Z2 is not broken, uc
i

do not mix with U c, T̄Σ) and in the MΣ → 0 limit (the light component must in this case

be orthogonal to U c). This explains the factors ε2 in

Y U = −







0 0 0

0 (4/9)αc
2λ

c
2ρuε2 (4/9)αc

2λ
c
3cρuε2

0 (4/9)αc
3λ

c
2ρuε2 sλ3






. (3.5)

In the equation above, ρu = (γα3)/(σcσ̄ctθ)(Mc/Vc)
2, which turns out to be close to one as

it should, as ρu ε ≈ 0.07–0.08.

The Yukawas of the first family vanish at the renormalizable level, as anticipated. We

will see below how they are generated at the non-renormalizable level. For the time being,
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let us comment about some interesting features of eqs. (3.4), (3.5). We have assumed that

i) the Z2-breaking field φ is in the adjoint of SU(4)c and ii) the masses of the messenger

fields and Σ are linked to Pati-Salam breaking, with the breaking along the B−L direction

taking place at a much smaller scale than the breaking in the T3R and singlet neutrino

directions. As a consequence, we find i) ms ¿ mb and mµ ¿ mτ , ii) |Vcb| ∼ ms/mb, iii)

(mτ/mb)M ≈ 1 iv) (mµ/ms)M ≈ 3, v) mc/mt ¿ ms/mb. We also predict the suppression

of the first family fermion masses. Note in particular that two different hierarchies in the

down quark/charged lepton sectors and in the up quark sector are obtained in terms of

a single hierarchy between the two scales of the theory Mc and M . Note also that the

relation |Vcb| ∼ ms/mb is a direct consequence of the principles of our approach. As usual

in the presence of a single Higgs multiplet, one also obtains λτ–λb–λt unification.

Let us now consider the neutrino sector. The (RP -odd) SM singlet neutrino fields in

the model are nc
1,2,3, N c, N̄ c, AΣ. Eq. (3.2) shows that αc

3n
c
3 + αc

2n
c
2, N c, N̄ c, AΣ get a

heavy mass, while αc
2n

c
3 − αc

3n
c
2 and nc

1 are massless at the renormalizable level. This is

clearly a problem, as it implies a Dirac mass to the tau neutrino at the electroweak scale.

A possible solution is to invoke (small) non-renormalizable contributions to the masses of

αc
2n

c
3 − αc

3n
c
2 and nc

1. However, this would make the latter fields dominate the see-saw,

while we saw in the previous section that we prefer N c to dominate. We therefore couple

the SM singlets nc
i to 3 Pati-Salam singlets si ∼ (1, 1, 1,−,−) through the Dirac mass term

provided by the interaction ηs
kiskf

c
i F̄ ′

c. This raises the fields nc
i and sk at the higher of the

two scales of our model. Note that it is always possible to choose a basis for the sk’s such

that the coupling ηs
ki and the Dirac mass term are diagonal.

The fields nc
i and sk constitute a pseudo-Dirac system. That is because a Pati-Salam

invariant Majorana mass term for the Pati-Salam singlets sk cannot be written at the renor-

malizable level, according to our hypothesis stating that the mass terms should originate

from PS breaking. The only correction to the pure Dirac limit therefore comes from the

mixing of the sk’s with AΣ, which is however suppressed by v/Mc = ε. Since the coupling

of the pseudo-Dirac pair (nc
3, s3), to the light lepton doublets, λ3n

c
3Lhu, only involves nc

3,

the contribution to the see-saw of the (nc
i , si) fields is negligible. In fact, that contribution

vanishes in the pure Dirac limit. This can be seen for example by diagonalizing the Dirac

pairs in terms of two Majorana mass eigenstates with opposite mass. As in the Dirac limit

n3 contains the two eigenstates with exactly the same weight, the two contributions to the

see-saw exactly cancel.7 Taking into account the small corrections to the pure Dirac limit,

the contribution of (nc
i , si) to the see-saw turns out to be suppressed by ε. More precisely,

the contribution to the atmospheric angle is suppressed by ε and the contribution to m2/m3

by ε2. We can then safely neglect the fields nc
i and sk for our purposes. This can also be

verified by using the full 9 × 9 singlet neutrino mass matrix in the see-saw formula.

We are then left with 3 SM singlet (right-handed) neutrinos N c, N̄ c, AΣ with mass

7An alternative way to verify that the Dirac system does not contribute to the see-saw is to observe that

its contribution is proportional to (M−1

D )nc

3
nc

3
, where MD is the Dirac mass term for the two Weyl spinors

nc
3, s3 with vanishing diagonal entries. As the inverse of a Dirac mass matrix is still in the Dirac form,

(M−1

D )nc

3
nc

3
= 0
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terms

M cN̄ cN c −
√

3

8
VcAΣ(σcN̄

c + σ̄cN
c) + MΣA2

Σ (3.6)

entering the see-saw through the Yukawa interaction N c(λc
3l3 + λc

2l2)hu. The following

effective D = 5 left-handed neutrino mass operator is then generated

1

4

σc

σ̄c

1

Mc
(cλc

3l
′
3 + λc

2l
′
2)

2h2
u, (3.7)

where l′3 = cl3 − sL, l′2 = l2 are the light lepton doublets. We have therefore obtained a

normal hierarchy and a large atmospheric mixing angle θ23 in a natural way,

tan θ23 =
λc

2

cλc
3

, m3 = ρν
v2
EW

2s2
23Mc

, m1,2 ≈ 0, (3.8)

where vEW ≈ 174GeV is the electroweak breaking scale, s23 = sin θ23, and ρν =

(σc/σ̄c)(λ
c
2)

2 ∼ 1. Eq. (3.8) determines the scale Mc of our model, Mc ≈ 0.6 · 1015 GeVρν .

The solar mixing angle and mass difference are generated at the non-renormalizable level

together with the masses of the first charged fermion masses.

3.3 The first family

As discussed, the first family fermion masses are protected by an accidental U(1)1 family

symmetry. That symmetry is actually broken by the coupling of the first family with

the heavy Higgs messenger H. However, H does not mix with the light Higgs h at the

renormalizable level, which means that for our purposes it is effectively decoupled. The

U(1)1 symmetry can therefore be broken by non-renormalizable interactions either because

the interactions directly involve the first family or because they induce a H-h mixing. Here

we will consider the second possibility. In both cases, the first family mass will be further

suppressed with respect to the other families by the heavy cutoff scale Λ.

Not all the non-renormalizable operators are suitable to give a mass to the first family.

For example, the operator f c
i fjφh gives the same contribution to the Yukawas of the up and

down quarks (in this λt ≈ λb scenario the up quark mass Yukawa needs to be suppressed by

a factor of about 200). The operator F ′
cF

′φh is also dangerous, as it indirectly contributes

to the up quark mass only. We therefore need to make an assumption on the operators

generated by the physics above the cutoff Λ. A simple assumption is that the the heavy

physics only couples φ to the barred F̄ ′, F̄ ′
c (but not to F ′, F ′

c). This would still allow an

operator in the form
a

Λ
F̄ ′

cF̄
′φh, (3.9)

which turns out to give mass to the electron and the down quark, but not to the up quark,

as desired. The reason is that the operator above induces a mixing in the down Higgs

sector but not in the up Higgs sector. As mentioned in section 3.1, Hd and Hu get a mass

term, η′VcL
′Hu + η̄′VcL̄

′Hd, from the vev of F̄ ′
c through the renormalizable interactions in

eq. (3.1). In addition, the operator in eq. (3.9) gives a mass term −a(Vcv/Λ)L̄′hd, which

induces a mixing between the two down Higgses Hd and hd. This in turn communicates

the U(1)1 breaking provided by λH
ij f c

i fjH to the down quark and charged lepton sector.
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When Hd is expressed in terms of the exact Higgs mass eigestates H ′
d and h′

d, the latter

operator induces in fact a contribution to the down and charged lepton Yukawas matrices

Y D
ij and Y E

ij given by ε′ρhλH
ij (up to the L-l′3 mixing), where

ε′ =
v

Λ
= ε

Mc

Λ
(3.10)

and ρh = a/η̄′ ∼ 1. The small ratio Mc/Λ explains the further suppression of the first

fermion family. We then obtain, at leading order,

Y D =







ρhλH
11ε

′ ρhλH
12ε

′ ρhλH
13c ε′

ρhλH
21ε

′ αc
2λ

c
2ε/3 αc

2λ
c
3c ε/3

ρhλH
31ε

′ αc
3λ

c
2ε/3 −sλ3






Y E =







ρhλH
11ε

′ ρhλH
12ε

′ ρhλH
13c ε′

ρhλH
21ε

′ −αc
2λ

c
2ε −αc

2λ
c
3c ε

ρhλH
31ε

′ −αc
3λ

c
2ε −sλ3






. (3.11)

The up Higgs does not mix, which explains the smallness of the up quark Yukawa. The

latter will be eventually generated by Planck scale effects. For example an operator

(c/Mpl)f
c
i fjφh would provide a up quark Yukawa of the correct order of magnitude for

c ∼ 1. The latter argument also provides an independent estimate (an upper bound in the

general case) of the scale Mc, which happens to coincide with our estimate from neutrino

physics.

Eq. (3.11) shows that the electron and down quark masses are expected to be similar,

while the correct relation is me ∼ md/3 at the heavy scale. In order to avoid the wrong

relation, λH
11 should be sufficiently suppressed in the basis in flavour space which identifies

the first family. Quantitatively, the requirement is λH
11/λ

H
12,21 <

√

md/ms/3 ∼ 0.08. This

suppression could for example accidentally arise when rotating the fields to go in the

basis in which eqs. (3.4), (3.11) are written. In this case one obtains me ∼ md/3 and

Vus ∼
√

md/ms, as observed, at the price of a fine-tuning of at least O(10).8

The full CKM matrix can be obtained by diagonalizing the up and down Yukawa

matrices. Vub/Vcb and Vtd/Vts both get a contribution from Y D
31 . On top of that, Vtd/Vts

also gets a contribution from the commutation of the “12” rotation used to diagonalize Y D

and the relative 23 rotation(Vcb). In formulas,

Vub

Vcb
=

αc
2λ

H
31

αc
3λ

H
21

Vus, δ = arg

[

αc
2λ

H
31

αc
3λ

H
21

]

,

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

=

∣

∣

∣

∣

|Vus| −
∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

eiδ

∣

∣

∣

∣

, (3.12)

where δ is the CKM phase in the standard parameterization. The present SM CKM fits

give [7] |(αc
2λ

H
31)/(α

c
3λ

H
21)| ≈ 0.4.

A comment on Vus is in order. As we saw, the physics giving rise to the Yukawas of

the first family will typically also generate a contribution to Vus. Vus and the first family

are however in principle independent issues. In fact, Vus is related to the breaking of the

LR symmetry, while the first family requires the breaking of the corresponding accidental

flavour symmetry. Indeed, the reason why the mechanism generating first family Yukawas

8One could make at this point the totally disinterested observation that our model involves more than

O(10) relations among O (1) coefficients, so that accidental cancellation of leaving less than one part out of

10 is expected to occur somewhere. In fact, from this point of view, the distribution of the absolute values

of our O (1) coefficients turns out to be rather peaked on 1.
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also typically generates Vus is that in order to make md/mb À mu/mt the LR symmetry

must be broken. On the other hand, it is possible to generate a contribution to Vus without

inducing a corresponding contribution to the first family mass. The operator biXcF
cfih/Λ,

involving the SU(2)R breaking field Xc, gives for example a contribution 2(b1/λ
c
2)(Mc/Λ)

to Vus without breaking U(1)1 (it also modifies eq. (3.12)). From the previous argument

and from eq. (3.11) we expect
Mc

Λ
∼ |Vus|

2
∼ 0.1. (3.13)

Finally, let us go back to neutrino masses. By using the renormalizable interactions, we

succeeded in giving a mass to the heaviest neutrino ν3 and in generating a large atmospheric

neutrino angle θ23. We still need to generate a mass for the intermediate neutrino m2

and a corresponding large solar angle θ12. As shown in the appendix, non-renormalisable

interactions involving the fields introduced so far can generate a mass term for m2 at the

correct level together with a non-vanishing θ13 close to the current experimental limit, but

not a large solar angle θ12. However, a large solar angle can be induced by a Pati-Salam

singlet S ∼ (1, 1, 1,+,−) coupling at the non-renormalizable level only.9 Its mass term will

be in the form d′(V 2
c /Λ)S2. Its Yukawa coupling to the lepton doublets comes from the

operator eiF
′
cSfihu/Λ. Its mixing with the other SM singlets is negligible. Therefore, its

contribution to the neutrino mass operator is simply given by

− 1

4d′
1

Λ
(e3c l′3 + e2l

′
2 + e1l

′
1)

2h2
u. (3.14)

We then get an additional contribution to θ13, θe
13 = −s2

23ρ12e1(c c23e3 + s23e2)(Mc/Λ),

where ρ12 = 1/(ρνd′). Moreover, in the limit in which only eq. (3.14) adds to the leading

term in eq. (3.7), the lighter neutrino masses m1 and m2, together with the solar mixing

angle, are given by the diagonalization of the “12” mass matrix

−s2
23ρ12m3

Mc

Λ

(

e2
1 e1(c23e2 − c s23e3)

e1(c23e2 − c s23e3) (c23e2 − c s23e3)
2

)

. (3.15)

4. Summary

In this paper we have proposed a new approach to fermion masses an mixings in which the

dominance of a single family of messengers accounts for the lightness of the first family,

and the further dominance of the left-handed doublet messengers accounts for the lightness

of the second family. With only these assumptions we are able to account for the fermion

mass hierarchy, as well as the successful mass relation ms/mb ≈ |Vcb|. In order to naturally

acount for a small Cabibbo angle, and the correct charm quark mass, we were then led to

consider a broken Pati-Salam gauge structure.

The hypothesis underlying our setting is that the Pati-Salam gauge structure, the

three SM families, and a relatively small set of heavy fields happen to be the only structure

9This is an important assumption as renormalizable interactions SF̄ ′

cF
c, SF̄ cF ′

c would in principle be

allowed by the symmetries of the theory.
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surviving below the cutoff Λ ∼ 1016−17 GeV of our model. The flavour structure of the

SM fermions essentially only follows from this hypothesis, with no dynamics related to the

family indices or detailed knowledge of the theory above the cutoff required.

This framework has several interesting features. The horizontal hierarchy among dif-

ferent families follows from a vertical hierarchy among messengers belonging to the same

family. The latter is in turn related to the breaking pattern of the Pati-Salam group, with

the breaking along the T3R and singlet neutrino directions taking place at a higher scale

than the breaking along the B − L direction. In spite of the absence of small coefficients,

the CKM mixing angles turn out to be small. At the same time, a large atmospheric mix-

ing appears in the neutrino sector between normal hierarchical neutrinos in a natural way.

This is obtained through a see-saw mechanism dominated by a singlet neutrino N c which

is not unified with the light lepton doublets, as it belongs to the messenger families. The

final scheme has N c as the dominant singlet, with S as the leading subdominant singlet

as in sequential dominance. The relation |Vcb| ∼ ms/mb is a direct consequence of the

principles of our approach. The two different mass hierarchies in the down quark/charged

lepton sectors on one side and in the up quark sector on the other are obtained in terms

of a single hierarchy between the two scales of the theory Mc and M . The suppression of

the first fermion family masses also does not need a new scale for the messenger fields. It

is actually a prediction of the model, as it again follows from the gauge structure of the

model, which forbids the relevant coupling of the Higgs messenger field. As usual in the

presence of a single Higgs multiplet, one also obtains λτ–λb–λt unification.

The precise structure of the masses and mixings of the first fermion family requires

an assumption on the operators generated by the physics above the cutoff Λ and relies on

an accidental cancellation corresponding to a fine-tuning of at least 10. In the neutrino

sector, a large solar mixing angle is obtained together with θ13 = O (m2/m3), close to the

present experimental limit.

In conclusion, we have proposed the notion of flavour from accidental symmetries as a

novel and promising approach to understanding the origin of flavour.
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A. The problem with solar neutrino mixing in the absence an additional

singlet

In this appendix we show that in the absence of S non-renormalizable contributions to

the superpotential generate a non-vanishing m2 and a sizable contribution to θ13, but no

large solar mixing angle. In general, the latter contributions can affect the see-saw either

through the singlet neutrino mass matrix or through the Yukawa interactions with the light

SM lepton doublets. The leading order operators contributing to the singlet neutrino mass
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matrix are F̄ ′
cF̄

′
cf

c
i f c

j , F̄ ′
cF̄

′
cF

cF c, F ′
cF

′
cF̄

cF̄ c, F̄ ′
cF

′
csksh, X2

c sksh. Only the two operators

involving sk affect the see-saw in a significant way. Let dij(V
2
c /Λ)sisj be the Majorana

mass term induced by those operators. If Ms is the singlet neutrino mass matrix, the s3s3

mass term gives (M−1
s )nc

3
nc

3
≈ −2(d33/η

s
3
2)/Λ. In turn, through the Yukawa interaction

λ3n
c
3Lhu and the see-saw mechanism, the latter gives a contribution

d

ηs
3
2

1

Λ
(sλ3l

′
3)

2h2
u (A.1)

to the dimension 5 neutrino mass operator, which adds to the leading order contribution

in eq. (3.7). By diagonalizing the resulting light neutrino mass matrix we then get

m2

m3

≈ 4ρ23 sin4 θ23
Mc

Λ
, (A.2)

where ρ23 = (sλ3/λ
c
2)

2(σ̄cd)/(σcηs
3
2) ∼ 1 and θ23 is the atmospheric mixing angle. The ratio

m2/m3 turns out to be of the correct order of magnitude given the estimate in eq. (3.13).

We also have non-renormalizable contributions to the Yukawa interactions with the

light SM lepton doublets. The relevant operators are biXcF
cfih/Λ and b′iΣF ′

cfihu/Λ, other

possibilities leading to a higher ε suppression. Both operators lead to a contribution to θ13

without inducing a significant solar mixing angle or m2/m3. We have already discussed

the first operator in connection to SU(2)R breaking and Vus. In the lepton sector its role is

again to misalign the Yukawa couplings of N c and Ec to the lepton doublets li. In a basis

in which Ec has no Yukawa interaction with l1, the Yukawa interaction of N c becomes

N c[λc
3l3 + λc

2l2 + 2b1(Mc/Λ)l1]hu and eq. (3.7) becomes

1

4

σc

σ̄c

1

Mc

(

cλc
3l

′
3 + λc

2l
′
2 + 2b1

Mc

Λ
l′1

)2

h2
u. (A.3)

The second operator b′iΣF ′
cfihu/Λ gives rise to a Yukawa interaction for the singlet AΣ,

−
√

3/8b′i(Vc/Λ)AΣlihu, which induces new contributions to the see-saw. In terms of the

inverse mass matrix M−1
s of the singlet neutrinos N c, N̄ c, AΣ, and in the limit in which

the nc
i contribution is neglected, the neutrino mass operator is in fact now given by

1

2

[

(M−1
s )NcNc(λc

i li)
2 + (M−1

s )AΣAΣ

(

√

3

8
b′i

V c

Λ
li

)2

− 2(M−1
s )AΣNc

(

√

3

8
b′i

V c

Λ
li

)

(λc
i li)

]

h2
u.

Since the determinant of the inverse matrix elements vanishes, (M−1
s )AΣAΣ(M−1

s )NcNc −
(M−1

s )2
AΣNc = (Ms)N̄cN̄c/det(Ms) = 0, the equation above gives again a contribution to

θ13 but not to θ12 or m2/m3. The neutrino mass operator can be rewritten in fact as

1

4

σc

σ̄c

1

Mc

(

cλc
3l

′
3 + λc

2l
′
2 +

b′1
σc

Mc

Λ
l′1

)2

h2
u. (A.4)

In the presence of both Mc/Λ corrections in eqs. (A.3), (A.4), the total contribution to θ13

is

θ13 ⊃ θb
13 = 2 sin θ23

b1 + b′1/(2σc)

λc
2

Mc

Λ
, (A.5)

close to the experimental limit.
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